Search results for "LINE: PROFILE"

showing 10 items of 13 documents

H-He collision-induced satellite in the Lyman alpha profile of DBA white dwarf stars

2020

The spectra of helium-dominated white dwarf stars with hydrogen in their atmosphere present a distinctive broad feature centered around 1160~\AA\/ in the blue wing of the Lyman-$\alpha$ line. It is extremely apparent in WD 1425+540 recently observed with HST COS. With new theoretical line profiles based on ab initio atomic interaction potentials we show that this feature is a signature of a collision-induced satellite due to an asymptotically forbidden transition. This quasi-molecular spectral satellite is crucial to understanding the asymmetrical shape of Lyman-$\alpha$ seen in this and other white dwarf spectra. Our previous work predicting this absorption feature was limited by molecular…

ATOMIC DATALINE: PROFILEAb initiochemistry.chemical_elementBASIS-SETLINEEXCITED-STATEAstrophysics::Cosmology and Extragalactic Astrophysics01 natural sciencesSpectral linePhysics - Atomic PhysicsWHITE DWARF0103 physical sciencesRadiative transferABSORPTIONAstrophysics::Solar and Stellar AstrophysicsAB-INITIO CALCULATIONPhysics::Atomic PhysicsELECTRONIC-TRANSITION MOMENT010306 general physicsSTARS: ATMOSPHERE010303 astronomy & astrophysicsHeliumLine (formation)POTENTIAL-ENERGY CURVEPhysics[PHYS]Physics [physics]BALMER-ALPHAWhite dwarfAstronomy and AstrophysicsMOLECULAR DATAPotential energyDipolechemistryAstrophysics - Solar and Stellar AstrophysicsSpace and Planetary ScienceATOMIC PROCESSSHAPE[PHYS.PHYS.PHYS-CHEM-PH]Physics [physics]/Physics [physics]/Chemical Physics [physics.chem-ph]Atomic physics[PHYS.ASTR]Physics [physics]/Astrophysics [astro-ph]
researchProduct

The accretion flow to the intermittent accreting ms pulsar, HETE J1900.1-2455, as observed by XMM-Newton and RXTE

2012

We present a study of the accretion flow to the intermittent accreting millisecond pulsar, HETE J1900.1-2455, based on observations performed simultaneously by XMM-Newton and RXTE. The 0.33-50 keV spectrum is described by the sum of a hard Comptonized component originated in an optically thin {\tau}~1 corona, a soft kTin~0.2 keV component interpreted as accretion disc emission, and of disc reflection of the hard component. Two emission features are detected at energies of 0.98(1) and 6.58(7) keV, respectively. The latter is identified as K{\alpha} transition of Fe XXIII-XXV. A simultaneous detection in EPIC-pn, EPIC-MOS2, and RGS spectra favours an astrophysical origin also for the former, …

Astrophysics::High Energy Astrophysical PhenomenaFOS: Physical sciencesAstrophysicsCompact star01 natural sciencesSpectral lineidentification line: profiles stars: neutron pulsars: individual: HETE J1900.1-2455 X-rays: binaries [line]GravitationSettore FIS/05 - Astronomia E AstrofisicaMillisecond pulsar0103 physical sciences010303 astronomy & astrophysicsAstrophysics::Galaxy AstrophysicsPhysicsHigh Energy Astrophysical Phenomena (astro-ph.HE)010308 nuclear & particles physicsline: identification line: profiles stars: neutron pulsars: individual: HETE J1900.1-2455 X-rays: binariesAstronomyAstronomy and AstrophysicsRadiusAccretion (astrophysics)Neutron starAmplitudeSpace and Planetary ScienceAstrophysics::Earth and Planetary AstrophysicsAstrophysics - High Energy Astrophysical Phenomena
researchProduct

Investigating the Response of Loop Plasma to Nanoflare Heating Using RADYN Simulations

2018

We present the results of 1D hydrodynamic simulations of coronal loops that are subject to nanoflares, caused by either in situ thermal heating or nonthermal electron (NTE) beams. The synthesized intensity and Doppler shifts can be directly compared with Interface Region Imaging Spectrograph (IRIS) and Atmospheric Imaging Assembly (AIA) observations of rapid variability in the transition region (TR) of coronal loops, associated with transient coronal heating. We find that NTEs with high enough low-energy cutoff (EC) deposit energy in the lower TR and chromosphere, causing blueshifts (up to approximately 20 kilometers per second) in the IRIS Si IV lines, which thermal conduction cannot repro…

Electron density010504 meteorology & atmospheric sciencesFOS: Physical sciencesAstrophysicsElectron01 natural sciencesSun: activity0103 physical sciencesAstrophysics::Solar and Stellar AstrophysicsSun: transition region010303 astronomy & astrophysicsChromosphereSolar and Stellar Astrophysics (astro-ph.SR)0105 earth and related environmental sciencesPhysicsSun: coronaAstronomy and AstrophysicsPlasmaCoronal loopAstronomy and AstrophysicThermal conductionNanoflaresIntensity (physics)Astrophysics - Solar and Stellar Astrophysicsline: profileSpace and Planetary SciencePhysics::Space PhysicsThe Astrophysical Journal
researchProduct

Theoretical profiles of the Mg + resonance lines perturbed by collisions with He

2016

International audience; The effects of collision broadening by He are central to understanding the opacity of cool stellar atmospheres. Aims. DZ white dwarfs show metal lines which are, in many cases, believed to come from some rocky material, a remnant of a former exoplanetary system. The analysis of the Mg + resonance lines is a valuable method to determine the chemical abundances in these systems. Methods. Unified profiles of the strongest of the UV lines of Mg + have been calculated in the semi-classical approach using very recent ab initio potential energies. Results. We present the first theoretical line profile calculations of the resonance lines of Mg + that have been perturbed by h…

Opacity[ PHYS.ASTR ] Physics [physics]/Astrophysics [astro-ph]Ab initiochemistry.chemical_elementAstrophysics01 natural sciencesResonance (particle physics)Metal0103 physical sciencesstars: atmospheresAstrophysics::Solar and Stellar Astrophysics010306 general physics010303 astronomy & astrophysicsHeliumAstrophysics::Galaxy AstrophysicsLine (formation)white dwarfsPhysicsStellar atmosphereWhite dwarfAstronomy and Astrophysicsline: profileschemistry13. Climate actionSpace and Planetary Sciencevisual_artvisual_art.visual_art_mediumAstrophysics::Earth and Planetary AstrophysicsAtomic physics[PHYS.ASTR]Physics [physics]/Astrophysics [astro-ph]
researchProduct

XMM-Newton detects a relativistically broadened iron line in the spectrum of the ms X-ray pulsar SAX J1808.4-3658

2008

We report on a 63-ks long XMM-Newton observation of the accreting millisecond pulsar SAX J1808.4-3658 during the latest X-ray outburst which started on September 21st 2008. The pn spectrum shows a highly significant emission line in the energy band where the iron K-alpha line is expected, and which we identify as emission from neutral (or mildly ionized) iron. The line profile appears to be quite broad (more than 1 keV FWHM) and asymmetric; the most probable explanation for this profile is Doppler and relativistic broadening from the inner accretion disc. From a fit with a diskline profile we find an inner radius of the disc of 8.7^(+3.7)_(-2.7) R_g, corresponding to 18.0^(+7.6)_(-5.6) km f…

PhysicsAstrophysics::High Energy Astrophysical PhenomenaAstrophysics (astro-ph)accretion accretion disks line: profiles stars: pulsars: individual: SAX J1808.4-3658 relativity X-rays: binariesFOS: Physical sciencesAstronomy and AstrophysicsAstrophysicsRadiusAstrophysics::Cosmology and Extragalactic AstrophysicsAstrophysicssymbols.namesakeNeutron starSettore FIS/05 - Astronomia E AstrofisicaSpace and Planetary ScienceMillisecond pulsarIonizationsymbolsAstrophysics::Solar and Stellar AstrophysicsEmission spectrumAstrophysics::Earth and Planetary AstrophysicsDoppler effectAstrophysics::Galaxy AstrophysicsX-ray pulsarLine (formation)
researchProduct

A relativistic iron emission line from the neutron star low-mass X-ray binary GX 3+1

2012

We present the results of a spectroscopic study of the Fe K{\alpha} emission of the persistent neutron-star atoll low-mass X-ray binary and type I X-ray burster GX 3+1 with the EPIC-PN on board XMM-Newton. The source shows a flux modulation over several years and we observed it during its fainter phase, which corresponds to an X-ray luminosity of Lx~10^37 ergs/s. When fitted with a two-component model, the X-ray spectrum shows broad residuals at \sim6-7 keV that can be ascribed to an iron K{\alpha} fluorescence line. In addition, lower energy features are observed at \sim3.3 keV, \sim3.9 keV and might originate from Ar XVIII and Ca XIX. The broad iron line feature is well fitted with a rela…

PhysicsHigh Energy Astrophysical Phenomena (astro-ph.HE)010308 nuclear & particles physicsAstrophysics::High Energy Astrophysical Phenomenaidentification line: profiles X-rays: individuals: GX 3+1 X-rays: binaries stars: neutron [line]X-ray binaryFOS: Physical sciencesAstronomy and AstrophysicsAstrophysicsRadiusAstrophysics::Cosmology and Extragalactic AstrophysicsType (model theory)01 natural sciencesLuminosityNeutron starSettore FIS/05 - Astronomia E Astrofisicaline: identification line: profiles X-rays: individuals: GX 3+1 X-rays: binaries stars: neutronSpace and Planetary Science0103 physical sciencesEmission spectrumAstrophysics - High Energy Astrophysical PhenomenaLow Mass010303 astronomy & astrophysicsAstrophysics::Galaxy AstrophysicsLine (formation)
researchProduct

A complete X-ray spectral coverage of the 2010 May-June outbursts of Circinus X-1

2012

Circinus X-1 is a neutron-star-accreting X-ray binary in a wide (P$_{\rm orb}$ = 16.6 d), eccentric orbit. After two years of relatively low X-ray luminosity, in May 2010 Circinus X-1 went into outburst, reaching 0.4 Crab flux. This outburst lasted for about two orbital cycles and was followed by another shorter and fainter outburst in June. We focus here on the broadband X-ray spectral evolution of the source as it spans about three order of magnitudes in flux. We attempt to relate luminosity, spectral shape, local absorption, and orbital phase. We use multiple Rossi-XTE/PCA (3.0--25 keV) and Swift/XRT (1.0--9.0 keV) observations and a 20 ks long Chandra/HETGS observation (1.0--9.0 keV), t…

PhysicsHigh Energy Astrophysical Phenomena (astro-ph.HE)Spectral shape analysis010308 nuclear & particles physicsAstrophysics::High Energy Astrophysical PhenomenaX-raybinaries X-rays: individuals: Circinus X-1 accretion accretion disks line: profiles [X-rays]FOS: Physical sciencesAstronomy and AstrophysicsOrbital eccentricityAstrophysicsLight curve01 natural sciencesSpectral evolutionSettore FIS/05 - Astronomia E AstrofisicaAccretion disc13. Climate actionSpace and Planetary Science0103 physical sciencesAstrophysics::Solar and Stellar AstrophysicsCircinusX-rays: binaries X-rays: individuals: Circinus X-1 accretion accretion disks line: profilesAstrophysics - High Energy Astrophysical Phenomena010303 astronomy & astrophysics
researchProduct

Pressure Shift and Gravitational Red Shift of Balmer Lines in White Dwarfs. Rediscussion

2015

The Stark-induced shift and asymmetry, the so-called pressure shift (PS) of $H_\alpha$ and $H_\beta$ Balmer lines in spectra of DA white dwarfs (WDs), as masking effects in measurements of the gravitational red shift in WDs, have been examined in detail. The results are compared with our earlier ones from before a quarter of a century (Grabowski et al. 1987, hereafter ApJ'87; Madej and Grabowski 1990). In these earlier papers, as a dominant constituent of the Balmer-line-profiles, the standard, symmetrical Stark line profiles, shifted as the whole by PS-effect, were applied to all spectrally active layers of the WD atmosphere. At present, in each of the WD layers, the Stark-line-profiles (e…

Physicsatomic processes; line: formation; line: profiles; plasmas; white dwarfsmedia_common.quotation_subjectFOS: Physical sciencesBalmer seriesWhite dwarfAstronomy and AstrophysicsAstrophysicsPlasmaAsymmetrySpectral linesymbols.namesakeStarsAstrophysics - Solar and Stellar AstrophysicsSpace and Planetary SciencesymbolsSolar and Stellar Astrophysics (astro-ph.SR)Line (formation)media_commonGravitational redshift
researchProduct

The Gaia-ESO Survey: Catalogue of Hα emission stars

2015

We discuss the properties of Hα emission stars across the sample of 22035 spectra from the Gaia-ESO Survey internal data release, observed with the GIRAFFE instrument and largely belonging to stars in young open clusters. Automated fits using two independent Gaussian profiles and a third component that accounts for the nebular emission allow us to discern distinct morphological types of Hα line profiles with the introduction of a simplified classification scheme. All in all, we find 3765 stars with intrinsic emission and sort their spectra into eight distinct morphological categories: single-component emission, emission blend, sharp emission peaks, double emission, P-Cygni, inverted P-Cygni…

PhysicscatalogStars: emission-line BeStar formationAstrophysics::High Energy Astrophysical PhenomenaSIMBADstars: peculiarAstronomy and AstrophysicsAstrophysics::Cosmology and Extragalactic AstrophysicsAstrophysicsopen clusters and associations: generalAstronomy and AstrophysicSpectral lineStarsline: profile13. Climate actionSpace and Planetary ScienceStellar physicsstars: activityAstrophysics::Solar and Stellar AstrophysicsEmission spectrumAstrophysics::Galaxy AstrophysicsOpen clusterLine (formation)
researchProduct

A relativistically broadened iron line from an Accreting Millisecond Pulsar

2010

The capabilities of XMM-Newton have been fully exploited to detect a broadened iron Kα emission line from the 2.5 ms Accreting Millisecond Pulsar, SAX J1808.4-3658. The energy of the transition is compatible with fluorescence from neutral/lowly ionized iron. The observed large width (FWHM more than 1 keV) can be explained through Doppler and relativistic broadening from the inner rings of an accretion disc close to the NS. From a fit of the line shape with a diskline model we obtain an estimate of the inner disc radius of 18.0-5.6+7.6km for a 1.4 M⊙ neutron star. The disc is therefore truncated inside the corotation radius (31 km for SAX J1808.4-3658), in agreement with the observation of c…

PhysicsrelativityAstrophysics::High Energy Astrophysical PhenomenaX-ray binaryAstronomyAstrophysics::Cosmology and Extragalactic AstrophysicsRadiusAstrophysicsstars: pulsars: individual: SAX J1808.4-3658accretion accretion diskprofiles; relativity; stars: pulsars: individual: SAX J1808.4-3658; X-rays: binaries; Physics and Astronomy (all) [accretion accretion disks; line]X-rays: binarieNeutron starPhysics and Astronomy (all)Pulsarline: profileMillisecond pulsarAstrophysics::Solar and Stellar AstrophysicsAstrophysics::Earth and Planetary AstrophysicsEmission spectrumAstrophysics::Galaxy AstrophysicsLine (formation)Doppler broadening
researchProduct